Edexcel Maths C2

Topic Questions from Papers

Differentiation

Leave

Find the coordinates of the stationary point on the curve with equation y	(4)

N 2 3 4 9 2 B 0 3 2 8

10.

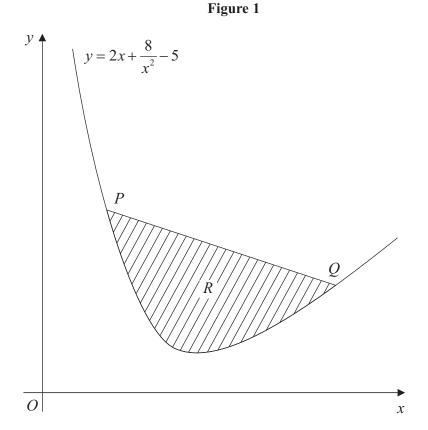


Figure 1 shows part of the curve C with equation $y = 2x + \frac{8}{x^2} - 5$, x > 0.

The points P and Q lie on C and have x-coordinates 1 and 4 respectively. The region R, shaded in Figure 1, is bounded by C and the straight line joining P and Q.

(b) Use calculus to show that y is increasing for	x > 2
---	-------

(4)

7. The curve C has equation

$$y = 2x^3 - 5x^2 - 4x + 2.$$

(a) Find $\frac{dy}{dx}$.

(2)

(b) Using the result from part (a), find the coordinates of the turning points of C.

(4)

(c) Find $\frac{d^2y}{dx^2}$.

(2)

(d) Hence, or otherwise, determine the nature of the turning points of C.

estion 7 continued	

10.

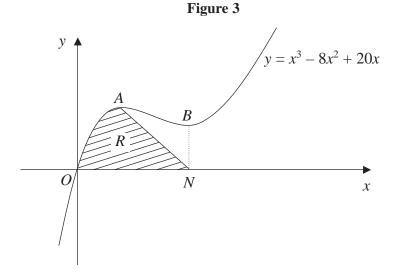


Figure 3 shows a sketch of part of the curve with equation $y = x^3 - 8x^2 + 20x$. The curve has stationary points *A* and *B*.

(a) Use calculus to find the x-coordinates of A and B.

(4)

(b) Find the value of $\frac{d^2y}{dx^2}$ at A, and hence verify that A is a maximum.

1.	$f(x) = x^3 + 3x^2 + 5.$	
Find		
(a) $f''(x)$,		
		(3)

8. A diesel lorry is driven from Birmingham to Bury at a steady speed of v kilometres per hour. The total cost of the journey, £C, is given by

$$C = \frac{1400}{v} + \frac{2v}{7}.$$

(a) Find the value of v for which C is a minimum.

(5)

(b) Find $\frac{d^2C}{dv^2}$ and hence verify that C is a minimum for this value of v.

(2)

(c) Calculate the minimum total cost of the journey.

10.

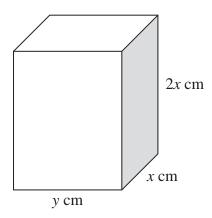


Figure 4

Figure 4 shows a solid brick in the shape of a cuboid measuring 2x cm by x cm by y cm.

The total surface area of the brick is 600 cm².

(a) Show that the volume, $V \text{ cm}^3$, of the brick is given by

$$V = 200x - \frac{4x^3}{3}.$$

(4)

Given that x can vary,

- (b) use calculus to find the maximum value of V, giving your answer to the nearest cm³. (5)
- (c) Justify that the value of V you have found is a maximum.

Question 10 continued		blank
		Q1
	(Total 11 marks)	
	TOTAL FOR PAPER: 75 MARKS	
ENL		

9. Figure 4

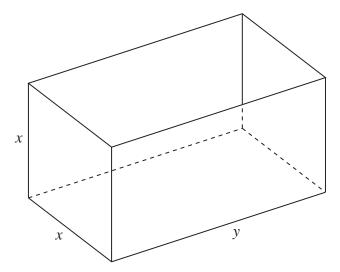


Figure 4 shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is 100 m³.

(a) Show that the area $A ext{ m}^2$ of the sheet metal used to make the tank is given by

$$A = \frac{300}{x} + 2x^2. {4}$$

(b) Use calculus to find the value of x for which A is stationary.

(4)

(c) Prove that this value of x gives a minimum value of A.

(2)

(d) Calculate the minimum area of sheet metal needed to make the tank.

Question 9 continued		blank
		Q9
	(Total 12 marks)	
	TOTAL FOR PAPER: 75 MARKS	
END		

Leave
blank

A solid right circular cylinder has radius r cm and height h cm.	
The total surface area of the cylinder is $800 \ cm^2$.	
(a) Show that the volume, V cm ³ , of the cylinder is given by	
$V = 400r - \pi r^3.$	(4)
Given that r varies,	
(b) use calculus to find the maximum value of V , to the nearest cm ³ .	(6)
(c) Justify that the value of V you have found is a maximum.	(2)

Question 10 continued		blank
		Q1
	(Total 12 marks)	
	TOTAL FOR PAPER: 75 MARKS	
I	END	

9.

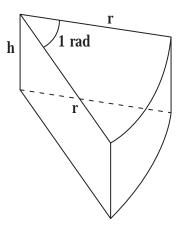


Figure 2

Figure 2 shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height h cm. The cross section is a sector of a circle. The sector has radius r cm and angle 1 radian.

The volume of the box is 300 cm³.

(a) Show that the surface area of the box, cm², is given by

$$=r^2+\frac{1800}{r}$$

(5)

(b) Use calculus to find the value of ${\bf r}$ for which $\,\,$ is stationary.

(4)

(c) Prove that this value of \boldsymbol{r} gives a minimum value of $\ .$

(2)

(d) Find, to the nearest cm², this minimum value of .

Question 9 continued		b
	(Total 13 marks)	
END	TOTAL FOR PAPER: 75 MARKS	

- The curve C has equation $y = 12\sqrt{(x) x^{\frac{3}{2}}} 10$,
 - (a) Use calculus to find the coordinates of the turning point on C.

(7)

(b) Find $\frac{d^2y}{dx^2}$.

(2)

(c) State the nature of the turning point.

(1)

Question 9 continued		blank
quosiion o commucu		
		Q9
	(Total 10 marks)	
	TOTAL FOR PAPER: 75 MARKS	
EN	ND	

3.		
J.		

 $y = x^2 - k \sqrt{x}$, where is a constant.

(a) Find $\frac{dy}{dx}$.

(2)

(b) Given that y is decreasing at x = 4, find the set of possible values of .

10. The volume $V \text{ cm}^3$ of a box, of height x cm, is given by

$$V = 4x(5-x)^2$$
, $0 < x < 5$

(a) Find $\frac{dV}{dx}$.

(4)

(b) Hence find the maximum volume of the box.

(4)

(c) Use calculus to justify that the volume that you found in part (b) is a maximum.

Question 10 continued	Leave blank
	010
(Total 10 marks)	Q10
TOTAL FOR PAPER: 75 MARKS END	

8.

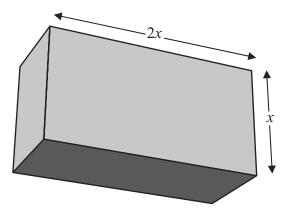


Figure 2

A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, x cm, as shown in Figure 2.

The volume of the cuboid is 81 cubic centimetres.

(a) Show that the total length, L cm, of the twelve edges of the cuboid is given by

$$L = 12x + \frac{162}{x^2} \tag{3}$$

(b) Use calculus to find the minimum value of L.

(6)

(2)

(c) Justify, by further differentiation, that the value of L that you have found is a minimum.

Question 8 continued	blank
	1

8.

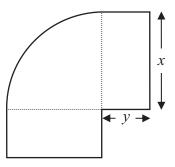


Figure 3

Figure 3 shows a flowerbed. Its shape is a quarter of a circle of radius x metres with two equal rectangles attached to it along its radii. Each rectangle has length equal to x metres and width equal to y metres.

Given that the area of the flowerbed is 4 m²,

(a) show that

$$y = \frac{16 - \pi x^2}{8x}$$
 (3)

(b) Hence show that the perimeter P metres of the flowerbed is given by the equation

$$P = \frac{8}{x} + 2x \tag{3}$$

(c) Use calculus to find the minimum value of *P*.

(5)

(d) Find the width of each rectangle when the perimeter is a minimum. Give your answer to the nearest centimetre.

uestion 8 continued		
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

8.

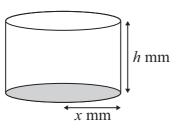


Figure 3

A manufacturer produces pain relieving tablets. Each tablet is in the shape of a solid circular cylinder with base radius x mm and height h mm, as shown in Figure 3.

Given that the volume of each tablet has to be 60 mm³,

(a) express h in terms of x,

(1)

(b) show that the surface area, $A \text{ mm}^2$, of a tablet is given by $A = 2\pi x^2 + \frac{120}{x}$ (3)

The manufacturer needs to minimise the surface area $A \text{ mm}^2$, of a tablet.

(c) Use calculus to find the value of x for which A is a minimum.

(5)

(d) Calculate the minimum value of A, giving your answer to the nearest integer.

(2)

(e) Show that this value of A is a minimum.

Question 8 continued	Leave blank

- **8.** The curve C has equation $y = 6 3x \frac{4}{x^3}$, $x \ne 0$
 - (a) Use calculus to show that the curve has a turning point P when $x = \sqrt{2}$

(4)

(b) Find the x-coordinate of the other turning point Q on the curve.

(1)

(c) Find $\frac{d^2y}{dx^2}$.

(1)

(d) Hence or otherwise, state with justification, the nature of each of these turning points P and Q.

(3)

estion 8 continued		

$y = 2x + 3 + \frac{8}{x^2}, x > 0$		
		(6)

9.	The	curve	with	equation

$$y = x^2 - 32\sqrt{x} + 20, \quad x > 0$$

has a stationary point P.

Use calculus

(a) to find the coordinates of P,

(6)

(b) to determine the nature of the stationary point P.

(3)

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$